Find the range of
$$f(x) = \log_2\left(\frac{x^2 + 4}{x^2 + 1}\right)$$

Let
$$u = \frac{x^2 + 4}{x^2 + 1} \Rightarrow ux^2 + u = x^2 + 4 \Rightarrow (u - 1)x^2 = 4 - u \Rightarrow x^2 = \frac{4 - u}{u - 1} \ge 0 \Rightarrow 1 < u \le 4$$

$$\log_2 1 < \log_2 u \le \log_2 4 \implies 0 < y \le 2$$

$$u = \frac{x^2 + 4}{x^2 + 1} = 1 + \frac{3}{x^2 + 1}$$

$$u_{\min} \approx \lim_{x \to \infty} 1 + \frac{3}{x^2 + 1} = 1 + \frac{3}{\infty} = 1$$
 and

$$u_{\min} \approx \lim_{x \to \infty} 1 + \frac{3}{x^2 + 1} = 1 + \frac{3}{\infty} = 1$$
 and $u_{\max} = 1 + \frac{3}{(x^2 + 1)_{\min}} = 1 + \frac{3}{0 + 1} = 4$

$$\therefore$$
 $1 < u \le 4 \implies 0 < y \le 2$

Find the range of
$$y = \sqrt{\sin x} + \sqrt{\cos x}$$
 $0 \le x \le \frac{\pi}{3}$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{\sin x}} \cdot \cos x + \frac{1}{2\sqrt{\cos x}} \cdot (-\sin x)$$

$$= \frac{(\cos x)^{3/2} - (\sin x)^{3/2}}{2\sqrt{\sin x} \cdot \sqrt{\cos x}} = 0 \implies x = \frac{\pi}{4}$$

Sign scheme for
$$\frac{dy}{dx}$$

$$f(0) = 1 + \frac{\pi/4}{\sqrt{2}} + \sqrt{\frac{1}{\sqrt{2}}} - \frac{\pi/3}{\sqrt{3}} + \sqrt{\frac{1}{2}}$$

$$= 2^{3/4} = \frac{3^{1/4} + 1}{\sqrt{2}} > 1$$

Range is
$$1 \le y \le 2^{3/4}$$

A function y = f(x) on domain 'D' is said to be periodic if there exists 'a' positive number 'T' such that $f(x+T) = f(x) \ \forall x \in D$. The least positive value of 'T' is called the fundamental period of the function f(x).

In order to test the periodicity of f(x) put f(x + T) = f(x), find all possible values of 'T' independent of x. If no positive value of 'T' independent of 'x' is possible then f(x) is said to be non-periodic or aperiodic. If positive value of 'T' independent of x is possible then f(x) is said to be periodic and the period of f(x) will be the least positive value of 'T'.

Pb.5 Which of the following functions are periodic? What are their periods?

(i) $\cos x$

- (ii) $|\cos x|$
- (iii) $\cos \sqrt{x}$

(iv) x - [x]

Sol. (i) Let
$$f(x) = \cos x$$

we put
$$f(x + T) = f(x)$$

i.e. $\cos(x + T) = \cos x$

$$\Rightarrow$$
 $x + T = 2n\pi \pm x, n = 0, \pm 1, \pm 2 \dots$

$$\Rightarrow T = \begin{cases} 2n\pi - 2x \text{ (not independent of } x) \\ or \\ 2n\pi \text{ (This is independent of } x) \end{cases}$$

- The positive value of T independent of 'x' is given by $T = 2n\pi$, n = 1, 2, 3, ...
 - \therefore The least positive value of $T = 2\pi$ (putting n = 1).

(ii)
$$f(x) = |\cos x|$$

$$\operatorname{put} f(x+T) = f(x)$$

i.e.
$$|\cos(x+T)| = |\cos x|$$

$$\Rightarrow |\cos(x+T)|^2 = |\cos x|^2$$

$$\Rightarrow$$
 $\cos^2(x+T) = \cos^2 x [\because |x|^2 = x^2]$

$$\Rightarrow$$
 $2\cos^2(x+T) = 2\cos^2 x$

$$\Rightarrow$$
 1+ cos 2(x + T) = 1+ cos 2x

$$\Rightarrow$$
 $\cos 2(x+T) = \cos 2x$

$$\therefore \quad 2(x+T) = 2n\pi \pm 2x$$

i.e.
$$T = \begin{cases} n\pi - 2x \text{(not independent of } x \text{)} \\ \text{or} \\ n\pi \end{cases}$$

The positive value of 'T' independent of x are given by

$$T = n\pi$$
, $n = 1, 2, 3, \dots$

Least positive value of $T = \pi$

(iii)
$$f(x) = \cos \sqrt{x}$$

$$\operatorname{Let} f(x+T) = f(x)$$

$$\Rightarrow \cos \sqrt{x+T} = \cos \sqrt{x}$$

$$\therefore \quad \sqrt{x+T} = 2n\pi \pm \sqrt{x}$$

or
$$T = \left(2n\pi \pm \sqrt{x}\right)^2 - x$$

Which is not independent of x. Hence, f(x) is non periodic.

(iv)
$$f(x) = x - [x]$$

Let
$$f(x + T) = f(x)$$

$$\therefore x + T - [x + T] = x - [x]$$

$$\Rightarrow T = [x + T] - [x]$$

 \therefore T is an integer and we know that least positive integer is 1.

T = 1 Hence f(x) is periodic with period '1'.

Student can also prove that $f(x) = \sqrt{x - [x]}$

 $g(x) = (x - [x])^2$ are also of the same period.

Characteristics of $f(x) = x - [x], \sqrt{x - [x]}$ or $(x - [x])^2$

- (i) These are periodic with period '1'.
- (ii) Their range is [0,1[i.e. $0 \le f(x) < 1$.
- (iii) These are discontinuous at all integers.

For being more familiar see the graphs

$$f(x) = x - [x]$$

$$= \begin{cases} x - (-1) = x + 1 ; -1 \le x < 0 \\ x - 0 = x ; 0 \le x < 1 \text{ and so on.} \\ x - 1 ; 1 \le x < 2 \end{cases}$$

Graph of
$$f(x) = x - [x]$$

2.8.1 Important Results

- (i) $\sin^n x$, $\cos^n x$, $\sec^n x$, and $\csc^n x$ are periodic functions with period π when n is even and 2π when n is odd or fraction. e.g. period of $\sin^2 x$ is π but period of $\sin^3 x$, $\sqrt{\sin x}$ is 2π . But period is π if $n = \text{even/odd. e.g. } \frac{2}{3}$.
- (ii) $\tan^n x$ and $\cot^n x$ are periodic functions with period π irrespective of 'n'.
- (iii) $|\sin x|$, $|\cos x|$, $|\tan x|$, $|\cot x|$, $|\sec x|$, & $|\csc x|$ are periodic functions with period π .
- (iv) If f(x) is periodic with period T, then:
 - (a) k.f(x) is periodic with period T.
 - (b) f(x+b) is periodic with period T.
 - (c) f(x) + c is periodic with period T.
 - (d) f(ax) is periodic with period $\frac{T}{|a|}$.

(e) kf(ax+b) is periodic with period $\frac{T}{|a|}$. Thus note that the period is affected only by coefficient of x, such as period of $\sin x$ is 2π but the period of $\left\{3\sin\left(2x+\frac{\pi}{9}\right)\right\}+5$ is equal to $\frac{2\pi}{2}=\pi$.

(v) Let $h(x) = af(x) \pm bg(x)$. If f(x) and g(x) are periodic functions with period $T_1 \& T_2$ respectively then h(x) is also periodic and the period of h(x) is the L.C.M. of $T_1 \& T_2$.

Note: The result (v) is not always applicable

Find the period of

(a)
$$f(x) = \sin(2\pi x + \pi/4) + 2\sin(3\pi x + \pi/3)$$

(b)
$$f(x) = \cos^2 x + \sin^2 x$$

Sol. (a) Period of
$$\sin(2\pi x + \pi/4) = 2\pi/2\pi = 1$$

Period of
$$2\sin(3\pi x + \pi/3) = 2\pi/3\pi = 2/3$$

Period of
$$f(x) = L.C.M.$$
 of 1 and 2/3

$$\frac{\text{L.C.M. of Numerator}}{\text{H.C.F. of Denominator}} = \frac{\text{L.C.M. of } 1 \& 2}{\text{H.C.F. of } 1 \& 3} = \frac{2}{1} = 2$$

 \therefore Period of $\cos^2 x = \pi$ and (b)

Period of $\sin^2 x = \pi$.

Period of f(x) should be L.C.M. of $\pi \& \pi$.

i.e. π which is false.

Because $f(x) = \cos^2 x + \sin^2 x = 1$ which is a constant and costant functions are periodic functions having no fundamental period.

Another example,

$$f(x) = |\cos x| + |\sin x|.$$

Period of both $|\cos x|$ and $|\sin x|$ is π

 \therefore Period of f(x) = L.C.M. of π and $\pi = \pi$ is false.

It's actual period is $\frac{\pi}{2}$ because

$$f(x + \pi/2) = |\cos(x + \pi/2)| + |\sin(x + \pi/2)|$$

$$= |-\sin x| + |\cos x| = |\sin x| + |\cos x|$$

$$\therefore f(x+\pi/2) = |\sin x| + |\cos x| = f(x)$$

Illustration: $f(x) = |\sin x| + |\cos x|$

For
$$0 \le x < \frac{\pi}{2} f(x) = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$
 ...(A)

For
$$\frac{\pi}{2} \le x < \pi$$
 $f(x) = \sin x - \cos x$

$$= \sqrt{2} \sin\left(x - \frac{\pi}{4}\right) = \sqrt{2} \sin\left(\left(x - \frac{\pi}{2}\right) + \frac{\pi}{4}\right) = f\left(x - \frac{\pi}{2}\right)$$

The graph of this can be obtained by shifting the graph (A) rightward by $\frac{\pi}{2}$.

For
$$\pi \le x < \frac{3\pi}{2}$$
 $f(x) = \sin x - \cos x$

$$= -\sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = \sqrt{2}\sin\left(\left(x + \frac{\pi}{4}\right) - \pi\right)$$

$$= \sqrt{2}\sin\left((x - \pi) + \frac{\pi}{4}\right) = f(x - \pi)$$

(Shift (A) rightward by π to obtain its graph)

$$f(x) = f\left(x - \frac{\pi}{2}\right) = f(x - \pi) = \dots$$
 and so on

 \Rightarrow f(x) is periodic with period $\frac{\pi}{2}$.

Now lets understand the cases when the result (v) fails. It is observed that if g(x) and f(x) are even functions, have same exponent and are co-functions of each other then the result (v) is definitely not applicable and it may also fail if the power of g(x) and f(x) are different. Such as:

$$f(x) = \sin^2 x + \cos^4 x$$

$$= \sin^2 x + \cos^2 x (1 - \sin^2 x)$$

$$= \sin^2 x + \cos^2 x - \sin^2 x \cos^2 x$$

$$= 1 - \frac{1}{4} \sin^2 2x = 1 - \frac{1}{4} \frac{(1 - \cos 4x)}{2}$$

$$= 1 - \frac{1}{8} + \frac{1}{8} \cos 4x = \frac{7}{8} + \frac{1}{8} \cos 4x$$
Clearly the period $= \frac{2\pi}{4} = \frac{\pi}{2}$

Hence, for the cases like this, it is advised to simplify f(x) and then find the period. **Another failure case**, we have learnt so far that if f(x) and g(x) are periodic functions with periods T_1 and T_2 respectively then f(x)+g(x) is periodic with period equal to LCM of T_1 and T_2 .

Now let us see another failure case of this rule, but first of all we should learn a very important property in number system. If some one asks to find the LCM of 1 and $\sqrt{2}$ or LCM of $\sqrt{2}$ and $\sqrt{3}$, what will be your answer? Students very often reply $\sqrt{2}$ and $\sqrt{6}$ respectively, which are false. Because LCM of numbers say x and y is divisible by x as well as y. But $\sqrt{2}$ here is not divisible by 1 in the 1st case. Hence, how $\sqrt{2}$ can be the LCM of 1 and $\sqrt{2}$? Certainly not. Exactly in the same way $\sqrt{6}$ is not the LCM of $\sqrt{2}$ and $\sqrt{3}$.

Remember that the LCM of a rational and an irrational number does not exist. Also, LCM of two different kinds of irrationals does not exist. But LCM of two similar irrational exists e.g. LCM of $2\sqrt{3}$ and $3\sqrt{3}$ is 6 $\sqrt{3}$. Hence, f(x) + g(x) will be periodic if LCM of T_1 and T_2 exists.

e.g. $h(x) = (x - [x]) + \sin x$ is non periodic because periods of (x - [x]) and $\sin x$ are 1 and 2π respectively. But LCM of 1 and 2π does not exist.

Ex.1. Let f(x) be a function satisfying $f(x+p) = 1 + \sqrt{2f(x) - (f(x))^2} \quad \forall x \in R \ (P > 0)$. Examine whether f(x) is periodic or not. If yes find its period.

Sol. Above relation is defined only

When
$$2f(x) - (f(x))^2 \ge 0 \Rightarrow 0 \le f(x) \le 2$$

Also
$$f(x+p) = 1 + \sqrt{2f(x) - (f(x))^2} \ge 1 \implies f(x) \ge 1$$

Hence, $1 \le f(x) \le 2$

Again
$$(f(x+p)-1)^2 = 2f(x)-(f(x))^2$$

$$\Rightarrow (f(x+p)-1)^2 = 1-(f(x)-1)^2 \qquad ...(i)$$

Replacing x by x + p we get

$$(f(x+2p)-1)^2 = 1 - (f(x+p)-1)^2 \qquad \dots (ii)$$

Subtracting (i) from (ii) we get

$$\Rightarrow [f(x+2p)-1]^2 = [f(x)-1]^2$$

$$\Rightarrow |f(x+2p)-1|=|f(x)-1|$$

$$\Rightarrow f(x+2p)-1=f(x)-1 \ (\because f(x) \ge 1)$$

$$f(x+2p) = f(x) \Rightarrow f \text{ is periodic with period } 2p.$$

Ex.2. Find the period of $f(x) = \sin(\pi(x-[x]))$

Sol. For
$$0 \le x < 1$$
; $f(x) = \sin \pi x$

For
$$1 \le x < 2$$
; $f(x) = \sin \pi (x-1) = f(x-1)$

For
$$2 \le x < 3$$
; $f(x) = \sin(\pi(x-2)) = f(x-2)$

and so on

f(x) = f(x-1) = f(x-2) =

 \Rightarrow f(x) is periodic with period = 1

Find the period of $f(x) = \sin(\sin x)$ Ex.3.

Sol.

Period of $\sin(\sin x)$ is 2π

Period of cos(sin x) is π .

Let f(x) be symmetric about the lines x = 1 and x = 3 then prove that f(x) is a periodic function and Ex.4. find its period.

Sol. Since f(x) is symmetric about the line x = 1;

$$f(1+t) = f(1-t)$$

Let
$$1 - t = x \implies t = 1 - x$$

$$\therefore f(2-x) = f(x)$$
Similarly, when $f(x)$ is symmetric about the line $x = 2$, we have

Similarly, when f(x) is symmetric about the line x = 3, we have

$$f(6-x) = f(x) \tag{2}$$

Hence,
$$f(2-x) = f(6-x) = f((2-x) + 4)$$

$$\Rightarrow f(X) = f(X+4)$$

Ex.5. If a function f(x) satisfies the relation $f(x+1) + f(x-1) = \sqrt{3}f(x) \ \forall x \in R$ prove that f(x) is periodic and find its period.

Sol. Given that
$$f(x+1) + f(x-1) = \sqrt{3}f(x)$$
 ...(1)

Replacing x by
$$x - 1$$
 and $x + 1$ in (1) we get $f(x) + f(x - 2) = \sqrt{3}f(x - 1)$...(2)

and
$$f(x+2)+f(x) = \sqrt{3}f(x+1)$$
 ...(3)

Adding (2) and (3) we find

$$2f(x) + f(x-2) + f(x+2) = \sqrt{3}(f(x-1) + f(x+1)) = \sqrt{3}\sqrt{3}f(x)$$

$$\Rightarrow f(x-2)+f(x+2)=f(x) \qquad ...(4)$$

Now replacing x by
$$x + 2$$
 we get $f(x) + f(x+4) = f(x+2)$...(5)

From (4) + (5)
$$f(x-2)+f(x+4)=0$$
 ...(6)

Replacing x by
$$x + 6$$
 we get $f(x+4) + f(x+10) = 0$...(7)

From (6) and (7) we find f(x-2) = f(x+10) = f(x-2+12)

Hence, f(x) is periodic with period 12.