PT-2/HALF YEARLY EXAMINATION, 2022-23

MATHEMATICS

Time - 7:15 AM to 10:20 AM

Class - IX

M.M. : 80

Name of the student _____

Date - 09.09.2022 (Friday)

__ Section ____

General Instructions –

- The question paper consists of 26 questions divided into 4 sections A, B, C& D
- > All questions are compulsory.
- Section A comprises of 11 questions of 2 marks each. Internal choice has been provided in two questions. It contains two case study-based questions of 5 marks each.
- Section B comprises of 7 questions of 3 marks each. Internal choice has been provided in two questions.
- Section C comprises of 3 questions of 4 marks each. Internal choice has been provided in two questions.
- Section D comprises of 3 questions of 5 marks each. Internal choice has been provided in two questions.

SECTION - A (2x11=22 marks)

Q1 A rational number between $\frac{1}{7}$ and $\frac{2}{7}$ is:

(a)
$$\frac{1}{14}$$
 (b) $\frac{1}{21}$ (c) $\frac{5}{14}$ (d) $\frac{5}{21}$

Q2 $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to:

Q3 Points (1, -2), (1, -3), (-4, 5), (0, 0), (3, -3)

(a) Lie in III quadrant (b) Lie in II quadrant

(c) Lie in IV quadrant (d) Do not lie in the same quadrant

OR

The co-ordinates of the points X, Y, Z and W from the figure.

(b) X(4,0), Y(4,3), W(-2,4), Z(-2,0)

(d) X(3,3), Y(4,3), Z(1,0), W(-2,4)

	Q4	If the perpendicular distance of a point P from the <i>x</i> -axis is 7 units and the foot of the perpendicular lies on the negative direction of <i>x</i> -axis, then the point P has:				
		(a) <i>y</i> -coordinate = 7 or –7 only		(b) <i>y</i> -coordinate	(b) <i>y</i> -coordinate = 7 only	
		(c) <i>y</i> -coordinate = –7 only		(d) <i>x</i> -coordinate	(d) <i>x</i> -coordinate = –7 only	
	Q5	Point (3, 4) lies on the	e graph of the equatior	3y = kx + 7. The value of k is:		
		(a) 4/3	(b) 5/3	(c) 3	(d) 7/3	
		OR				
		The graph of linear equation x+2y = 2, cuts the y-axis at:				
		(a) (2,0)	(b) (0,2)	(c) (0,1)	(d) (1,1)	
	Q6	The supplement of $\frac{4}{3}$ of right angle is equal to:				
		(a) 60°	(b) 100°	(c) 110°	(d) 70°	
	Q7	If the perimeter of an equilateral triangle is 60 cm, then what is its area?				
		(a) $200\sqrt{2}$ cm ²	(b) $100\sqrt{2} \text{ cm}^2$	(c) $100\sqrt{3}$ cm ²	(d) $200\sqrt{3} \text{ cm}^2$	
	Q8	8 The sides of a triangle are in the ratio of 3 : 4: 5. If its perimeter is 36 cm, then what area?				
		(a) 32 cm ²	(b) 54 cm^2	(c) 67 cm ²	(d) 72 cm ²	
	Q9	The sides of a triangle are 3 cm, 5 cm and 6 cm. What is its area?				
		(a) $2\sqrt{3}$ cm ²	(b) $2\sqrt{14} \text{ cm}^2$	(c) $5\sqrt{12}$ cm ²	(d) $2\sqrt{5} \text{ cm}^2$	
	Q10) An isosceles right triangle has an area of 8 cm^2 . The length of its hypotenuse is:				
		(a) √32 cm	(b) √16 cm	(c) √48 cm	(d) √24 cm	
	Q11	The value of y at $x = -1$ in the equation $5y = 2$ is				
		(a) $\frac{5}{2}$	(b) $\frac{2}{5}$	(c) 0	(d) 10	
	Q12	CASE- STUDY BASEI	D QUESTION-1		(1 × 5)	
		Two classmates, Salma and Anil simplified two different expressions during the revision hour and explained to each other their simplifications.				
Salma explains simplification of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ by rationalising the demension explains simplification of $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$ by using the identity				e denominator and Anil ntity (a+b) (a–b).		
		Based on the above information, answer the following questions.				
(i) What is the conjugate of $\sqrt{5} + \sqrt{3}$?						
		(a) $\sqrt{5} + \sqrt{3}$	(b) $\sqrt{5} - \sqrt{3}$	(c) $\sqrt{5} \times \sqrt{3}$	$(d)\frac{\sqrt{5}}{\sqrt{3}}$	
			[r	-		

(ii) By rationalising the denominator of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ Salma got the answer:

(a) $\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}$ (b) $\frac{\sqrt{2}(\sqrt{5}-\sqrt{3})}{2}$ (c) $\sqrt{5}-\sqrt{3}$ (d) $\frac{\sqrt{2}(\sqrt{5}+\sqrt{3})}{2}$

(iii) Anil appliedidentity to solve $(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$ (a) (a + b)(a - b) (b) (a + b)(a + b) (c) (a - b)(a - b) (d) (x + a)(x + b)(iv) $(\sqrt{2} + \sqrt{3}) (\sqrt{2} - \sqrt{3})$ is equal to: (d) −5 (b) 3 (c) 5 (a) −1 (v) Addition of $(\sqrt{2} + \sqrt{3})$ and $(\sqrt{2} - \sqrt{3})$ is equal to: (a) a rational number (b) an Irrational number (c) an Integer (d) a whole number

Q13 CASE-STUDY BASED QUESTON-2

There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". The sides of the wall are 15 m, 11 m and 6 m.

Based on the above information, answer the following questions:

The semi perimeter of the triangle is. (i)

(ii) If a, b, c are the lengths of the three sides of a triangle then the formula to find the perimeter of the triangle is:

(a)
$$\frac{a+b+c}{2}$$
 (b) $a+b+c$ (c) $3a$ (d) $2(a+b+c)$

(iii) Area of the triangle is:

(a)
$$15 \text{ m}^2$$
 (b) 30 m^2 (c) $20\sqrt{2} \text{ m}^2$ (d) $20\sqrt{3} \text{ m}^2$

(iv) Formula to find area of the sidewall is:

(a)
$$\sqrt{s(s-a)(s-b)(s-c)}$$
 (b) $\sqrt{s(s+a)(s+b)(s+c)}$
(c) $\sqrt{s(s+a)(s-b)(s-c)}$ (d) $\sqrt{s(s+a)(s-b)(s+c)}$

- (d) $\sqrt{s(s+a)(s-b)(s+c)}$
- (v) Perimeter of the triangle is:

Q14 Find three different irrational numbers between the rational numbers $\frac{5}{11}$ and $\frac{9}{11}$.

Q15 Express 2.4178 in the form of $\frac{p}{q}$ where p and q are integers and $q \neq 0$

(1×5)

- Q16 Find the value of k, if x = 2, y = 1 is a solution of the equation 5x + 4y = k.
- Q17 If an angle is half of its complementary angle, then find its degree measure.

OR

An angle is 14° more than its complement. What is its measure?

Q18 In the given figure, OD bisects $\angle AOC$, OE bisects $\angle BOC$ and OD \perp OE. Show that points A, O and B are collinear.

Q19 Write any three Euclid's Axioms.

OR

Write any three Euclid's Postulates.

Q20 If a point C lies between two points A and B such that AC = BC, then prove that AC = $\frac{1}{2}$ AB, explain by drawing the figure.

Section - C (4x3=12 marks)

Q21 Find the value of *a* and *b* by rationalising the denominator of the following:

$$\frac{3}{4\sqrt{5} - \sqrt{3}} + \frac{2}{4\sqrt{5} + \sqrt{3}} = a\sqrt{5} + b\sqrt{3}$$

Q22 If $(5)^{x-3} \times (3)^{2x-8} = 225$, then find the value of *x*.

OR

Show that : $(x^{a-b})^{a+b}(x^{b-c})^{b+c}(x^{c-a})^{c+a} = 1$

Q23 In the given figure, triangle AOB with coordinates of A and O as (4,0) and (0,0), AB=5 units, find the coordinates of B. Also, find the area of Δ AOB.

OR

In the given figure, Δ ABC is an equilateral triangle with coordinates of B and C as B (1,0) and C (5,0). Find the coordinates of vertex A. Also, find the area of the triangle ABC.

Section-D (5x3=15 marks)

Q24 The force exerted to pull a cart is directly proportional to the acceleration produced in the body. Express the statement as a linear equation in two variables by taking the constant mass equal to 6 kg. Write the equation in standard form and also write the values of a , b and c.

OR

If the work done by a body on application of a constant force is directly proportional to the distance travelled by the body, express this in the form of an equation in two variables by taking the constant force as 3 units. Also write the equation in standard form and write the values of a, b and c.

Q25 In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2}$ ($\angle QOS - \angle POS$)

OR

It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

Q26 In the given figure, lines XY and MN intersect at 0. If $\angle POY = 90^{\circ}$, and a : b = 2 : 3, then find c.

