PT-2/HALF YEARLY EXAMINATION, 2022-23
 MATHEMATICS
 Time - 7:15 AM to 10:20 AM
 Class - IX

M.M. : 80

Date - 09.09.2022 (Friday)
Name of the student \qquad Section \qquad

General Instructions -

The question paper consists of 26 questions divided into 4 sections A, B, C\& D
$>$ All questions are compulsory.
$>$ Section A comprises of 11 questions of 2 marks each. Internal choice has been provided in two questions. It contains two case study-based questions of 5 marks each.
$>$ Section B comprises of 7 questions of 3 marks each. Internal choice has been provided in two questions.
> Section C comprises of 3 questions of 4 marks each. Internal choice has been provided in two questions.
$>$ Section D comprises of 3 questions of 5 marks each. Internal choice has been provided in two questions.

SECTION - A (2x11=22 marks)
Q1 A rational number between $\frac{1}{7}$ and $\frac{2}{7}$ is:
(a) $\frac{1}{14}$
(b) $\frac{1}{21}$
(c) $\frac{5}{14}$
(d) $\frac{5}{21}$

Q2 $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to:
(a) 2
(b) 4
(c) 8
(d) 20

Q3 Points $(1,-2),(1,-3),(-4,5),(0,0),(3,-3)$
(a) Lie in III quadrant
(b) Lie in II quadrant
(c) Lie in IV quadrant
(d) Do not lie in the same quadrant
OR

The co-ordinates of the points $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W from the figure.

(a) $\mathrm{X}(4,3), \mathrm{Y}(4,3), \mathrm{Z}(2,0), \mathrm{W}(-2,4)$
(b) $\mathrm{X}(4,0), \mathrm{Y}(4,3), \mathrm{W}(-2,4), \mathrm{Z}(-2,0)$
(c) $\mathrm{X}(0,0), \quad \mathrm{Y}(4,4), \mathrm{Z}(3,8), \mathrm{W}(04)$
(d) $\mathrm{X}(3,3), \mathrm{Y}(4,3), \mathrm{Z}(1,0), \mathrm{W}(-2,4)$

Q4 If the perpendicular distance of a point P from the x-axis is 7 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has:
(a) y-coordinate $=7$ or -7 only
(b) y-coordinate $=7$ only
(c) y-coordinate $=-7$ only
(d) x-coordinate $=-7$ only

Q5 Point $(3,4)$ lies on the graph of the equation $3 y=k x+7$. The value of k is:
(a) $4 / 3$
(b) $5 / 3$
(c) 3
(d) $7 / 3$

OR

The graph of linear equation $x+2 y=2$, cuts the y-axis at:
(a) $(2,0)$
(b) $(0,2)$
(c) $(0,1)$
(d) $(1,1)$

Q6 The supplement of $\frac{4}{3}$ of right angle is equal to:
(a) 60°
(b) 100°
(c) 110°
(d) 70°

Q7 If the perimeter of an equilateral triangle is 60 cm , then what is its area?
(a) $200 \sqrt{2} \mathrm{~cm}^{2}$
(b) $100 \sqrt{2} \mathrm{~cm}^{2}$
(c) $100 \sqrt{3} \mathrm{~cm}^{2}$
(d) $200 \sqrt{3} \mathrm{~cm}^{2}$

Q8 The sides of a triangle are in the ratio of 3:4:5. If its perimeter is 36 cm , then what is its area?
(a) $32 \mathrm{~cm}^{2}$
(b) $54 \mathrm{~cm}^{2}$
(c) $67 \mathrm{~cm}^{2}$
(d) $72 \mathrm{~cm}^{2}$

Q9 The sides of a triangle are $3 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm . What is its area?
(a) $2 \sqrt{3} \mathrm{~cm}^{2}$
(b) $2 \sqrt{ } 14 \mathrm{~cm}^{2}$
(c) $5 \sqrt{12} \mathrm{~cm}^{2}$
(d) $2 \sqrt{5} \mathrm{~cm}^{2}$

Q10 An isosceles right triangle has an area of $8 \mathrm{~cm}^{2}$. The length of its hypotenuse is:
(a) $\sqrt{32} \mathrm{~cm}$
(b) $\sqrt{16} \mathrm{~cm}$
(c) $\sqrt{48} \mathrm{~cm}$
(d) $\sqrt{24} \mathrm{~cm}$

Q11 The value of y at $x=-1$ in the equation $5 y=2$ is
(a) $\frac{5}{2}$
(b) $\frac{2}{5}$
(c) 0
(d) 10

Q12 CASE- STUDY BASED QUESTION-1

Two classmates, Salma and Anil simplified two different expressions during the revision hour and explained to each other their simplifications.
Salma explains simplification of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ by rationalising the denominator and Anil explains simplification of $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$ by using the identity $(a+b)(a-b)$.
Based on the above information, answer the following questions.
(i) What is the conjugate of $\sqrt{5}+\sqrt{3}$?
(a) $\sqrt{5}+\sqrt{3}$
(b) $\sqrt{5}-\sqrt{3}$
(c) $\sqrt{5} \times \sqrt{3}$
(d) $\frac{\sqrt{5}}{\sqrt{3}}$
(ii) By rationalising the denominator of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ Salma got the answer:
(a) $\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}$
(b) $\frac{\sqrt{2}(\sqrt{5}-\sqrt{3})}{2}$
(c) $\sqrt{5}-\sqrt{3}$
(d) $\frac{\sqrt{2}(\sqrt{5}+\sqrt{3})}{2}$
(iii) Anil applied \qquad identity to solve $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
(a) $(a+b)(a-b)$
(b) $(a+b)(a+b)$
(c) $(a-b)(a-b)$
(d) $(x+a)(x+b)$
(iv) $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$ is equal to:
(a) -1
(b) 3
(c) 5
(d) -5
(v) Addition of $(\sqrt{2}+\sqrt{3})$ and $(\sqrt{2}-\sqrt{3})$ is equal to:
(a) a rational number
(b) an Irrational number
(c) an Integer
(d) a whole number

Q13 CASE-STUDY BASED QUESTON-2

There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". The sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m .

Based on the above information, answer the following questions:
(i) The semi perimeter of the triangle is.
(a) 30 m
(b) 16 m
(c) 32 m
(d) 15 m
(ii) If a, b, c are the lengths of the three sides of a triangle then the formula to find the perimeter of the triangle is:
(a) $\frac{a+b+c}{2}$
(b) $a+b+c$
(c) $3 a$
(d) $2(a+b+c)$
(iii) Area of the triangle is:
(a) $15 \mathrm{~m}^{2}$
(b) $30 \mathrm{~m}^{2}$
(c) $20 \sqrt{2} \mathrm{~m}^{2}$
(d) $20 \sqrt{3} \mathrm{~m}^{2}$
(iv) Formula to find area of the sidewall is:
(a) $\sqrt{s(s-a)(s-b)(s-c)}$
(b) $\sqrt{s(s+a)(s+b)(s+c)}$
(c) $\sqrt{s(s+a)(s-b)(s-c)}$
(d) $\sqrt{s(s+a)(s-b)(s+c)}$
(v) Perimeter of the triangle is:
(a) 35 m
(b) 16 m
(c) 32 m
(d) 15 m

Section - B (3 x7=21 marks)

Q14 Find three different irrational numbers between the rational numbers $\frac{5}{11}$ and $\frac{9}{11}$.
Q15 Express $2.417 \overline{8}$ in the form of $\frac{p}{q}$ where p and q are integers and $\mathrm{q} \neq 0$

Q16 Find the value of k, if $x=2, y=1$ is a solution of the equation $5 x+4 y=k$.
Q17 If an angle is half of its complementary angle, then find its degree measure.

OR

An angle is 14° more than its complement. What is its measure?
Q18 In the given figure, OD bisects $\angle A O C, \mathrm{OE}$ bisects $\angle B O C$ and $\mathrm{OD} \perp \mathrm{OE}$. Show that points A, O and B are collinear.

Q19 Write any three Euclid's Axioms.

OR

Write any three Euclid's Postulates.
If a point C lies between two points A and B such that $A C=B C$, then prove that $A C=\frac{1}{2} A B$, explain by drawing the figure.

Section - C ($4 \times 3=12$ marks)

Q21 Find the value of a and b by rationalising the denominator of the following:
$\frac{3}{4 \sqrt{5}-\sqrt{3}}+\frac{2}{4 \sqrt{5}+\sqrt{3}}=a \sqrt{5}+b \sqrt{3}$
Q22 If $(5)^{x-3} \times(3)^{2 x-8}=225$, then find the value of x.
OR
Show that: $\left(x^{a-b}\right)^{a+b}\left(x^{b-c}\right)^{b+c}\left(x^{c-a}\right)^{c+a}=1$
Q23 In the given figure, triangle AOB with coordinates of A and O as $(4,0)$ and $(0,0), A B=5$ units , find the coordinates of B. Also, find the area of $\triangle \mathrm{AOB}$.

In the given figure, $\triangle \mathrm{ABC}$ is an equilateral triangle with coordinates of B and C as $B(1,0)$ and $C(5,0)$. Find the coordinates of vertex A. Also, find the area of the triangle ABC.

Section-D (5x3=15 marks)

Q24 The force exerted to pull a cart is directly proportional to the acceleration produced in the body. Express the statement as a linear equation in two variables by taking the constant mass equal to 6 kg . Write the equation in standard form and also write the values of a, b and c.

OR

If the work done by a body on application of a constant force is directly proportional to the distance travelled by the body, express this in the form of an equation in two variables by taking the constant force as 3 units. Also write the equation in standard form and write the values of a, b and c.

Q25 In the given figure, POQ is a line. Ray OR is perpendicular to line PQ . OS is another ray lying between rays OP and OR . Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$

OR
It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.

Q26 In the given figure, lines $X Y$ and $M N$ intersect at 0 . If $\angle P O Y=90^{\circ}$, and $a: b=2: 3$, then find c .

