PT-2/HALF YEARLY EXAMINATION, 2022-23 CHEMISTRY

Class – XII

M.M.:70

Name of the student _____

Time – 3 hrs.

Date - 14.09.2022 (Wednesday)

_ Section _____

GENERAL INSTRUCTIONS:

- All questions are compulsory.
- Question nos. 1 to 21 are MCQs with one correct option and carrying 1 mark each.
- Question nos. 22 to 24 are objective/short answer type questions.
- Question nos. 25 to 28 are of 2 marks each.
- Question nos. 29 to 32 is of 3 marks each.
- Question nos. 33 to 35 is of 5 marks each.

SECTION - A

Q. 1 to 21 is of 1 mark each.

- Q.1 Which of the following aqueous solution should have highest boiling point?
 - a) 1 M NaOH b) 1 M Na₂SO₄ c) 1 M NH₄NO₃ d) 1 M KNO₃
- Q.2 Which of the following statement is false ?
 - a) Two different solution of sucrose of same molality prepare in different solvent will have the same depression in freezing point.
 - b) The osmotic pressure of a solution is given by the equation π =CRT. (where C is the molarity of the solution)
 - c) Decreasing order of osmotic pressure for 0.01M aqueous solution of Barium Chloride, Potassium chloride, acetic acid and sucrose is BaCl₂ > KCl > CH₃COOH > Sucrose
 - d) According to Raoult's Law, the vapour pressure exeterd by a volatile component of solution is directly proportional to its molar fraction in the solution.
- Q.3 We have three aqueous solution of NaCl labelled as 'A', 'B' and 'C' with concentration 0.1
 M, 0.01 M and 0.001 M respectively. The value of Van't Hoff factor for these solution will be in the order-

a) $i_A < i_B < i_C$ a) $i_A > i_B > i_C$ a) $i_A = i_B = i_C$ a) $i_A < i_B > i_C$

- Q.4 On the basis of the information given below mark the correct options
 - i) In bromoethane and chloroethane mixture intermolecular interaction of A-A and B-B type are nearly same as A-B type interaction.
 - ii) In the ethanol and acetone mixture A-A or B-B type intermolecular interactions are stronger than A-B type interaction.

- iii) In chloroform and acetone mixture A-A or B-B type intermolecular interactions are weaker than A-B type interaction
- a) solution (ii) and (iii) will follow Raoult's law
- b) solution (i) will follow Raoult's law
- c) solution (ii) will show negative deviation from Raoult's law
- d) solution (iii) will show positive deviation from Raoult's law
- Q.5 K_H values for Ar(g), CO₂(g), HCHO(g) and CH₄(g) are 40.39, 1.67, 1.83 × 10⁻⁵ and 0.413 respectively. Arrange these gases in the order of their increasing solubility.
 - a) $HCHO < CH_4 < CO_2 < Ar$ b) $HCHO < CO_2 < CH_4 < Ar$
 - c) $Ar < CO_2 < CH_4 < HCHO$ b) $Ar < CH_4 < CO_2 < HCHO$
- Q.6 Use the data given below, find out which of the following is the strongest oxidizing agent.
 - $E^{0}c_{r_{2}}o_{7}^{2-}/c_{r}^{3+}=1.33V$ $E^{0}c_{l_{2}}/c_{l}^{-}=1.36V$ $E^{0}_{Mn}o_{4}^{-}/Mn^{2+}=1.51V$ $E^{0}c_{r}^{3+}/c_{r}=-0.74V$ a) Cl^{-} b) Mn²⁺
 c) MnO_{4}^{-} d) Cr³⁺
- $Q.7 \qquad The \ quantity \ of \ charge \ required \ to \ obtain \ 1 \ mole \ of \ Aluminium \ from \ Al_2O_3 \ is \$
 - a) 1 F b) 6 F c) 3 F d) 2 F
- Q.8 While charging the lead storage battery
 - a) PbSO₄ anode is reduced to Pb b) PbSO₄ cathode is reduced to Pb
 - c) PbSO₄ cathode is oxidized to Pb d) PbSO₄ anode is oxidized to Pb
- Q.9 \wedge^{0}_{M} (NH4OH) is equal to
 - a) \wedge^{0}_{M} (NH₄OH) + \wedge^{0}_{M} (NH₄Cl) \wedge^{0}_{M} (HCl) b) \wedge^{0}_{M} (NH₄Cl) + \wedge^{0}_{M} (NaOH) \wedge^{0}_{M} (NaCl) c) \wedge^{0}_{M} (NH₄Cl) + \wedge^{0}_{M} (NaCl) - \wedge^{0}_{M} (NaOH) d) \wedge^{0}_{M} (NaOH) + \wedge^{0}_{M} (NaCl) - \wedge^{0}_{M} (NH₄Cl)
- Q.10 Consider a first order gas phase decomposition reaction given below
 - $A(g) \rightarrow B(g) + C(g)$

The initial pressure of the system before decomposition of A was P_i . After lapse of time 't', total pressure of the system increased by x unit and become ' P_t '. The rate constant 'K' for the reaction is given as –

a)
$$K = \frac{2.303}{t} \log\left(\frac{P_i}{p_i - x}\right)$$

b) $K = \frac{2.303}{t} \log\left(\frac{P_i}{2p_i - P_t}\right)$
c) $K = \frac{2.303}{t} \log\left(\frac{P_i}{2p_i + P_t}\right)$
d) $K = \frac{2.303}{t} \log\left(\frac{P_i}{p_i + x}\right)$

Q.11 Consider the Arrhenius equation given below and mark the correct option.

 $K = Ae^{-Ea}/RT$

- a) Rate constant increase exponentially with increasing activation energy and decreasing temperature.
- b) Rate constant decrease exponentially with increasing activation energy and decreasing temperature.
- c) Rate constant increase exponentially with decreasing activation energy and decreasing temperature.
- d) Rate constant increase exponentially with decreasing activation energy and increasing temperature.
- Q.12 Which of the following expression is correct for the rate of reaction given below –

$$5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+} \rightarrow 3Br_{2}(g) + 3H_{2}O(l)$$

a)
$$\frac{\Delta[Br^{-}]}{\Delta t} = 5 \frac{\Delta[H^{+}]}{\Delta t}$$

b) $\frac{\Delta[Br^{-}]}{\Delta t} = \frac{6}{5} \frac{\Delta[H^{+}]}{\Delta t}$
c) $\frac{\Delta[Br^{-}]}{\Delta t} = \frac{5}{6} \frac{\Delta[H^{+}]}{\Delta t}$
d) $\frac{\Delta[Br^{-}]}{\Delta t} = 6 \frac{\Delta[H^{+}]}{\Delta t}$

- Q.13 A first order reaction is 50% completed in 1.26×10^{14} sec. How much time would it takes for 100% completion ?
 - a) 1.26×10¹⁵ sec b) 2.52×10²⁵ sec c) 2.52×10¹⁴ sec d) Infinite
- $Q.14 \quad On \ addition \ of \ small \ amount \ of \ KMnO_4 \ to \ connected \ H_2SO_4 \ a \ green \ oily \ compound \ is \ obtained \ which \ is \ highly \ explosive \ in \ nature. \ Identify the \ compound \ from \ the \ following :$

a) Mn_2O_7 b) MnO_2 c) $MnSO_4$ d) Mn_2O_3

Q.15 Which of the following are not disproportionation reactions?

1.
$$Cu^+(aq) \rightarrow Cu^{2+}(aq) + Cu(s)$$

2.
$$3MnO_4^- + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$$

$$3.2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$$

- 4. $2MnO_4^-$ + $3Mn^{2+}$ + $2H_2O \rightarrow 5MnO_2$ + $4H^+$
- a) 1 & 3 b) 1, 2, & 3 c) 2, 3, 4 d) 1 & 4
- Q.16 Gadolinium belong to 4f-series. It's atomic number is 64. Which of the following is correct electronic configuration of gadolinium ?

a) [Xe]
$$4f^{7}5d^{1}6s^{2}$$
 b) [Xe] $4f^{6}5d^{2}6s^{2}$ c) [Xe] $4f^{8}6d^{2}$ d) [Xe] $4f^{9}5s^{1}$

- Q.17 Why HCl not used to make the medium acidic in oxidation reaction of $KMnO_4$ in acidic medium?
 - a) Both HCl and KMnO₄ act as oxidising agents.
 - b) $KMnO_4$ oxidises HCl into Cl_2 which is also an oxidising agent.
 - c) KMnO $_4$ is weaker oxidising agent than HCl
 - d) KMnO₄ act as reducing agent in the presence of HCl.

Q.18	When 1 mole of $CrCl_3.6H_2O$ is treated with The formula of the complex is -	excess of AgNO ₃ , 3 mole of AgCl are obtained.	
	a) $[CrCl_3(H_2O)_3].3H_2O$	b) [CrCl(H ₂ O) ₅]Cl ₂ .H ₂ O	
	c) [CrCl ₂ (H ₂ O) ₄]Cl.2H ₂ O	d) $[Cr(H_2O)_6]Cl_3$	
Q.19	Indicate the complex ion which shows Geometrical Isomexism.		
	a) $[Cr(H_2O)_4Cl_2]^+$ b) $[Co(NH_3)_6]^{3+}$	c) [Pt(NH ₃) ₃ Cl] d) [Cr(CN) ₅ (NC)] ³⁻	
Q.20	What kind of isomerism exist between (greyish-Green)	$[Cr(H_2O)_6]Cl_3$ (violet) and $[Cr(H_2O)_5Cl]Cl_2.H_2O$	
	a) Linkage isomerism	b) Ionisation Isomerism	
	c) Hydrate isomerism	d) Coordination Isomerism	
Q.21	IUPAC name of [Pt(NH ₃) ₂ Cl (NO ₂)] is		
	a) Platinum diaminechloronitrite	b) Chloronitrito-N-ammineplatinum (II)	
	c) Diamminechlorido nitrito-N-platinum (II	I) d) Diammine chlorido nitrito-N-Platinate(II)	
Q.22	Fill in the blanks.	(1x4=4)	
	a) The coordination number of the central a	atom in [Cr(en) ₃] ³⁺ is	
	b) The oxidation number of Cr in CrO_5 is		
	c) The order of the reaction H_2 + $Cl_2 \rightarrow 2HCl$ is		
	d) The electrolyte used for primary cell (Dr	y cell) is	
Q.23	Match the following.	(1x6=6)	
	Α	В	
	a) Ebulioscopic constant	i) High efficiency	
	b) Cryoscopic constant	ii) CrO ₃	
	c) Rusting of Iron	iii) Fe ₂ O ₃	
	d) Fuel cell	iv) Elevation in boiling point	
	e) Acidic oxide	v) Mn ₂ O ₇	
	f) Amphoteric oxide	vi) Electrochemical process	
		vii) Depression in freezing point	
		viii) Osmotic pressure	
		ix) Primary cell	
Q.24	Define the following –	(1x4=4)	
	a) Activation energy	b) Pseudo first order reaction	
	c) Ambidentate ligand	e) Ionisation isomers	

<u>SECTION - B</u>

Q.25 to 28 is of 2 marks each.

- Q.25 Write the geometrical isomers of the compound $[Cr(NH_3)_4Cl_2]^+$ will they show optical isomerism. Justify your answer ?
- Q.26 Draw the shape of following ions.
 - a) CrO_4^{-2} b) $Cr_2O_7^{-2}$ c) MnO_4^{-1} d) MnO_4^{-2}

Q.27 a) Draw a graph for log A vs t for a 1st order reaction (A \rightarrow product)

b) Draw a graph for $t_{1/2}$ vs $[A_0]$ for a zero order reaction.

Q.28 Define the following -

a) Osmotic pressure b) Anoxia

SECTION – C

Q.29 to 32 is of 3 marks each.

Q.29 Write IUPAC name of the following -

a) $[Co(NH_3)_5 (ONO)]^{2+}$ b) $K_3[Cr(C_2O_4)_3]$ c) $[Fe(NH_3)_4 Cl (NO_2)]Cl$

- Q.30 a) Why mercury cell gives constant voltage throughout its life? Explain with reactions.
 - b) How many columbs of electricity is required for the following 20gm Ca from Ca^{2+} ions. (Ca = 40)
- Q.31 a) State and explain Kohlrausch's law with a suitable example.

b) What is 'Sacrificial electrode'? Explain with an example.

Q.32 Calculate log Kc for the reaction at 298 K and also ΔG^0 .

 $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$

(given $E_{Ag^+/Ag}^0 = 0.80V$ and $E_{Cu^{2+}/Cu}^0 = 0.34V$)

SECTION – D

- Q.33 a) What mass of NaCl (MW = 58.5 gm) must be dissolved in 65 gm of water to lower the freezing point by 7.5° C (K_f = 1.86 K kg mole⁻¹) (i for NaCl = 1.87) (2¹/₂)
 - b) In a solvent 50% of an acid HA dimerises and rest dissociates. What is the Vant Hoff factor of acid? $(2^{1}\!/_{2})$

OR

- a) A solution contains 0.8960 gm of K_2SO_4 (MW=174) in 500 m of solution. Its osmotic pressure is found to be 0.69 atm. at 27°C. Calculate the value of Van't Hoff factor. (2)
- b) A solution containing 15 gm urea (MW=60) per litre of solution in water has same osmotic pressure as a solution of glucose (MW=180) in water calculate the mass of glucose present in one litre of its solution.

c) What is edema?

(1)

- Q.34 a) A time required for 10% completion of a 1st order reaction at 300K is equal to that required for its 25% completion at 310K. If the value of A is 4×10^{10} s⁻¹. Calculate log K at 320K and Ea. (log 3 = 0.4771, log2 = 0.3010, log2.73 = 0.436) (3)
 - b) Answer the following.
 - i) Give an example of fractional order reaction.
 - ii) Rate determing step of a reaction.

OR

The following data were obtained during the 1st order thermal decomposition of SO_2Cl_2 at a constant volume - (2¹/₂)

$SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$				
Expt.	(Time/sec)	Total pressure (in atm.)		
1.	0	0.5		
2	100	0.6		

Calculate the rate of reaction when total pressure is 0.65 atm. (log 5 = 0.6990, log 4 = 0.6021)

- b) The decomposition of A \rightarrow product has a value of K as $4.5 \times 10^3 \text{ s}^{-1}$ at 10°C and energy of activation 60 KJ/mole. At what temperature would K be $1.5 \times 10^4 \text{ s}^{-1}$. (2½)
- Q.35 Give reason for the following -
- a) (i) Cobalt (II) is stable in aqueous solution but in the pressure of complexing reagent it is easily oxidised. (3)

(ii) Cr⁺² is strongly reducing while Mn⁺³ is strongly oxidising.

(iii) Δ_a H of transition metal is very high.

b) Write balance chemical reaction of the following-

i) $Cr_2O_7^{-2} + I^- \rightarrow$ (In acid medium)

ii) $MnO_4^- + C_2O_4^{-2} \rightarrow$ (In acid medium)

OR

Give reason for the following.

- a) A transition metal exhibits highest oxidation states in oxides and fluorides.
- b) The atomic size of Zr and Hf is almost same.
- c) Among all the 1st row transition elements only $E^{0}_{Cu^{2+}/Cu}$ is +ve
- d) Complete and balance the following equation –

(i) $MnO_4^- + SO_2 \rightarrow$ (In acid medium)

(ii) $MnO_4^- + I^- + H_2O \rightarrow$

(2)

(2)

(1x5=5)